HealthDay News — Fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET) of the brain can be used to develop a deep learning algorithm for early prediction of Alzheimer’s disease (AD) that has high specificity and sensitivity, according to a study published online Nov. 6 in Radiology.

Yiming Ding, from the University of California in San Francisco, and colleagues collected prospective 18F-FDG PET brain images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 2,109 imaging studies; 1,002 patients) and a retrospective independent test set (40 imaging studies; 40 patients). A convolutional neural network of InceptionV3 architecture was trained on 90 percent of the ADNI data set and was tested on the remaining 10 percent and the independent test set.

The researchers found that when evaluated on predicting the final clinical diagnosis of AD in the independent test set (82 percent specificity at 100 percent sensitivity), the algorithm achieved an area under the receiver operating characteristic (ROC) curve of 0.98 an average of 75.8 months before the final diagnosis. In ROC space, the algorithm outperformed reader performance (57 percent sensitivity, 91 percent specificity). Attention to known areas of interest was demonstrated on a saliency map, with a focus on the entire brain.

Continue Reading

Related Articles

“With further large-scale external validation on multi-institutional data and model calibration, the algorithm may be integrated into clinical workflow and serve as an important decision support tool to aid radiology readers and clinicians with early prediction of AD from 18F-FDG PET imaging studies,” the authors write.

Several authors disclosed financial ties to the pharmaceutical and/or technology industries.

Abstract/Full Text